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Binary diffusion-limited cluster-cluster aggregation processes are studied as a function of the relative con-
centration of the two species. Both, short and long time behaviors are investigated by means of three-
dimensional off-lattice Brownian Dynamics simulations. At short aggregation times, the validity of the Hogg-
Healy-Fuerstenau approximation is shown. At long times, a single large cluster containing all initial particles
is found to be formed when the relative concentration of the minority particles lies above a critical value.
Below that value, stable aggregates remain in the system. These stable aggregates are composed by a few
minority particles that are highly covered by majority ones. Our off-lattice simulations reveal a value of
approximately 0.15 for the critical relative concentration. A qualitative explanation scheme for the formation
and growth of the stable aggregates is developed. The simulations also explain the phenomenon of monomer
discrimination that was observed recently in single cluster light scattering experiments.
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I. INTRODUCTION

Aggregation processes have been the subject of a large
number of theoretical and simulation studies due to their
importance for many industrial applications and natural phe-
nomena. Most of these works focus on initially monodis-
perse one-component systems. In real systems, however,
such ideal cases are rarely found. Moreover, naturally occur-
ring aggregation processes usually involve mixtures of enti-
ties with different properties.

In the present work, we study the aggregation behavior of
one of the simplest examples of such a multi-component
system. Our system is formed by two types of equally sized
colloidal particles. We assume the particles to diffuse freely
and to react on contact such that only collisions between
unlike particles lead to bond formation. This aggregation
scheme is known as binary diffusion-limited cluster-cluster
aggregation �BDLCA� �1�. Although it supposes a very ideal
case of aggregation processes arising in multi-component
systems, it will allow basic aspects of such processes to be
studied and analyzed. Moreover, it may even serve to model
real systems such as electrostatic heteroaggregation of mix-
tures of positively and negatively charged particles when the
electric interactions are sufficiently screened but not com-
pletely suppressed. In this case, only short-range repulsive
and attractive interactions between like and unlike particles
are present. Hence, the interactions control the stickiness of
the particles but are not expected to alter their diffusivity.

Pioneering BDLCA simulations were performed by
Meakin and Djordjević �2�. They studied 10000 monomers
that occupy the cells of a cubic lattice at a volume fraction of
�=0.0048. In their work, all clusters performed a random
walk with a size-independent diffusivity. They found that
only relatively small aggregates are formed when the initial

relative concentration of the minority particles, x, lies below
a critical value. In this case, all the minority particles achieve
to be contained in small aggregates that are completely
coated with majority particles. Evidently, these aggregates
cannot react anymore with other majority particles and so,
aggregation comes to an end. Stoll and Pefferkorn �3� per-
formed more realistic simulations considering a size-
dependent cluster diffusivity. The small number of particles
used by these authors, however, does not allow them to ex-
tract reliable conclusions concerning dynamical quantities.

Recently, exhaustive on-lattice simulations performed by
AlSunaidi et al. �1� confirmed the existence of such a critical
relative concentration, xc, separating two different aggrega-
tion regimes. For x�xc, aggregation continues until a unique
large cluster containing all the particles is formed. For x
�xc more than one stable cluster remains in the system.
They reported a value of xc around 0.2. Nevertheless, on-
lattice simulations limit bond formation to only a few sites
on the particle surface. This quite unrealistic geometric con-
straints for the cluster structure implies that the size of the
stable aggregates becomes restricted to 7, 12, 13, etc. if a
cubic lattice is used. Meakin and Djordjević already men-
tioned the necessity of performing off-lattice simulations in
order to avoid this unrealistic geometric constraint �2�. The
highly expensive computer time, however, dissuaded them
from performing off-lattice simulations.

Nowadays, the worthy improvement in computer technol-
ogy made it possible to carry out off-lattice BDLCA simula-
tions spending a reasonable time. Puertas et al. performed
such off-lattice simulations. They also included long-range
attractive and repulsive particle-particle interactions �4�.
Nevertheless, these long-range interactions imply that their
system is not diffusion-controlled and so does not correspond
to a BDLCA process. In addition, as they focus mainly on
the short time kinetics, stable aggregates were not reported.
Table I summarizes the main characteristics of the works
reviewed here.*Electronic address: rhidalgo@ugr.es
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The aim of this work is to study binary diffusion-limited
cluster-cluster aggregation processes by means of off-lattice
simulations. Both, the short and long time kinetics will be
investigated as a function of the initial relative concentration
of the two species. We especially focus on the formation and
growth of the stable aggregates that are expected at low rela-
tive concentration. Kinetic and structural aspects will be dis-
cussed and contrasted with the results reported in the litera-
ture for on-lattice simulations.

This paper is organized as follows: Section II reports the
theoretical background. Section III briefly describes the
simulations. In Section IV, the simulation results are reported
for both, short and long aggregation times. Furthermore, a
simple scheme for the off-lattice BDLCA kinetics is pro-
posed. Finally, Sec. V summarizes the conclusions.

II. THEORETICAL BACKGROUND

Aggregation processes are frequently described by means
of the cluster-size distribution �CSD�, ni�t�, which gives the
number of aggregates composed by i particles at the time t.
For dilute systems and irreversible aggregation, the CSD is
given by the well-known Smoluchowski coagulation equa-
tion �5,6�,

V
dni

dt
=

1

2�
j=1

i−1

kj,i−jnjni−j − ni�
j=1

�

kijnj , �1�

where V is the total volume of the system. The first term on
the right-hand side �rhs� of Eq. �1� accounts for all reactions
that create i-size clusters and so, is called birth term. The
second term, or death term, quantifies the disappearance of
i-size clusters due to reactions with other clusters. All physi-
cal information about the aggregation process is contained in
the set of aggregation rate constants, kij, usually known as
the kernel of the system.

In order to extend such a description to two-component
systems, not only the number of clusters composed by i par-
ticles, but also their internal composition is required. Accord-
ingly, we define the composition-detailed cluster size distri-
bution �CDCSD�, ni

l, as the number of clusters composed by
i particles, being l of them of the minority type. The CDCSD
is straightforwardly related with the nondetailed CSD, since
�l=0

i ni
l=ni. Analogously, we define kij

lm as the aggregation rate
constant controlling the aggregation of an i-size cluster con-

taining l minority particles and a j-size cluster containing m
minority particles. The corresponding aggregation equation
reads

V
dni

l

dt
=

1

2�
j=1

i−j

�
m=0

j

kj,i−j
m,l−mnj

mni−j
l−m − ni

l�
j=1

�

�
m=0

j

kij
lmnj

m. �2�

It should be noted that ni
l�t� does not contain information on

the internal structure. Hence, the rate constants kij
lm must be

understood as averages over all possible spatial configura-
tions.

Equations �1� and �2� can be solved analytically only for a
few special kernels with certain initial conditions �7�. As will
be mentioned in Sec. III, all the simulations performed in
this work started from monomeric initial conditions, i.e.,
ni

l�t=0�=�i1N0��l0�1−x�+�l1x�, where N0 is the total number
of particles in the system, 0�x�

1
2 is the relative concentra-

tion of the interacting species and �ij is the Kronecker delta.
Evidently, the most probable reaction during the early

stages of all aggregation processes starting from monomeric
initial conditions �including BDLCA processes� is dimer for-
mation. Consequently, the dimer formation rate constants,
k11

lm, play the predominant role here. Hogg, Healy, and Fuer-
stenau exploited this fact for deriving an approximation for
the monomer number evolution in binary heteroaggregation
processes in the zero time limit �8�. It is known as the HHF
approximation and is given by

V
dn1

dt
= − ks�n1�2, �3�

where ks is an effective dimer formation rate constant given
by

ks = �1 − x�2k11
00 + x2k11

11 + 2x�1 − x�k11
10. �4�

The effective dimer formation rate constant also provides an
adequate time scale for binary aggregation processes. Thus,
the aggregation time is defined as

tagr =
2V

N0ks
. �5�

In BDLCA processes, reactions between like particles are
not allowed, i.e., k11

00=k11
11=0. Therefore, Eq. �4� now reads as

follows:

ks = 2x�1 − x�k11
10. �6�

Since aggregation between unlike particles is just due to
Brownian diffusion, the rate constant k11

10 should just be the
Smoluchowski rate constant k11

Br �6�,

k11
Br =

8

3

kBT

�
, �7�

where kB is the Boltzmann constant, T is the temperature and
� is the viscosity of the medium. For water at T=293 K, one
obtains k11

Br=10.79	10−18 m3 s−1.

III. SIMULATION DETAILS

Extensive three-dimensional �3D� off-lattice Brownian
simulations with periodic boundary conditions were per-

TABLE I. Main characteristics of some two-component aggre-
gation simulations, initial number of monomers N0, volume fraction
�, diffusivity of an i-sized cluster Di, and on/off-lattice
performance.

Work N0 � Di /D1 Lattice

Meakin �1986� �2� 10000 0.0048 1 Cubic

Stoll �1993� �3� 1000 0.0034 i
 Cubic

AlSunaidi �2000� �1� 500000 0.010 a /Rg�i� Cubic

Puertas �2001� �4� 2000 0.0010 a /Rg�i� Off lattice

This work 25000 0.0001 a /Rg�i� Off lattice

LÓPEZ-LÓPEZ et al. PHYSICAL REVIEW E 72, 031401 �2005�

031401-2



formed. Initially, N0=25 000 spherical particles of radius a
=1 were randomly scattered in a cubic box of side L, avoid-
ing particle overlap. The box side was fixed to L=1015 in
order to obtain a volume fraction of �=0.0001. To the best
of our knowledge, these are the most diluted simulations of
BDLCA performed so far �see Table I�. In view of that, the
system can safely be considered as representative of the ideal
dilute regime. All particles are labelled with a property that
we named charge. This property was allowed to have two
possible values, +1 and −1, that correspond to the two dif-
ferent species of particles in a BDLCA process. The relative
concentration, x, is an input value for the simulations.

All the particles and clusters were randomly moved with a
size-dependent diffusion coefficient, D, that is related to the
cluster radius of gyration Rg through the Stokes law, i.e., D
�Rg

−1. In order to achieve BDLCA, the following reaction
rules were imposed: �i� collisions between unlike particles
always lead to bond formation and �ii� no bonds are allowed
to form between like particles. The simulations do not ac-
count for possible rotation of the clusters. More details about
this type of simulation can be found elsewhere �9–11�.

The effective initial dimer formation rate, ks, can be ob-
tained from the monomer time evolution at short aggregation
times, following the method reported by Drake �12�. It con-
sists in a linear fitting of the g�t� function, defined as

g�t� �
2V

N0
�� N0

n1�t�
− 1	 = kst . �8�

At sufficiently short times, when the linear fit holds, ks can
be identified with the slope of the fitting straight line.

Although Eq. �8� was derived for homoaggregation pro-
cesses, g�t� is always expected to behave linearly at short
aggregation times when the aggregation processes start from
monomeric initial conditions. In these cases, it should at least
be possible to fit a straight line to the onset of g�t�. This
procedure has been shown to be a suitable method for ob-
taining quite accurate ks values from simulations and experi-
ments, even when the aggregation kernel differed quite
strongly from the constant kernel �11,13�.

In a previous work �14�, the described simulation method
was used to determine the dimer formation rate constant un-
der one-component diffusion-limited cluster-cluster aggrega-
tion �DLCA� conditions. The obtained value was k11

Br

= �10.778±0.017�10−18 m3 s−1. This value is in excellent
agreement with the theoretical prediction given by Eq. �7�.
The fitting error was estimated assuming a 95% confidence
interval for the g�t� function. For the given initial concentra-
tion, the characteristic aggregation time calculated by means
of Eq. �5� was tagr

Br = �209.6±0.3� s.

IV. RESULTS AND DISCUSSION

A. Short time kinetics

BDLCA simulations were performed for a representative
set of relative concentrations. The effective dimer formation
rate constant, ks, was calculated according to the method
described in Sec. III. The fitting was restricted to a time
interval of only 20 s in order to use only the most linear part

of g�t�. This interval is about one order of magnitude smaller
than the Brownian aggregation time. Due to that short time
interval, the procedure was so accurate that the relative de-
viation was always smaller than 1%. Figure 1 shows the
obtained ks values as a function of the initial relative concen-
tration. As predicted by the HHF theory, the effective dimer
formation rate constant reach a maximum at x=0.5 where
ks
 1

2k11
Br.

It should be noted that simulation runs with a relative
concentration x of particles of one type are, in turn, simula-
tions with 1−x of particles of the other type. Accordingly,
only the simulations with x�0.5 were actually performed.
Equation �6� was used to fit the obtained ks data. As can be
appreciated in Fig. 1, the corresponding parabolic fitting is
excellent. Therefore, the HHF approximation is shown to be
accurate for the early stages of BDLCA processes. The best
fit was achieved for k11

01= �10.78±0.04�10−18 m3 s−1. As ex-
pected, this value is exactly the Brownian aggregation rate
constant k11

Br obtained in previous DLCA simulations.

B. Long time behavior

In the very early stages of BDLCA processes, only reac-
tions between monomers take place. This allowed an effec-
tive initial dimer formation rate constant, ks, to be deter-
mined. As time goes on, however, reactions between clusters
of any size occur and so, the complete set of reaction rate
constants must be accounted for. This implies that it becomes
a very challenging problem to obtain the complete aggrega-
tion kernel from experimental or simulated CSDs �15�. This
is, of course, far beyond the scope of this work. Neverthe-
less, valuable information about the aggregation processes
can be obtained directly from the cluster-size distributions
without having to go through a detailed kinetic analysis.

Figure 2 shows the time evolution of the CSD for
BDLCA processes starting from three significantly different
initial relative concentrations x=0.50, x=0.15, and x=0.05.
These values were chosen so that one lies clearly above, one
close and one clearly below the critical relative concentration
xc. The plots show only the concentrations of the smaller
clusters. One should, however, bear in mind that larger clus-
ters are also present in the system. Their concentrations are

FIG. 1. Effective dimer formation rate, ks, versus relative con-
centration, x, obtained from simulations �full squares� and the cor-
responding parabolic fit according to the HHF prediction �solid
line�.
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not plotted for the sake of clearness. Instead, the total num-
ber of clusters, M1�t�=�i=0

� ni�t�, is included. As can be ob-
served, the overall behavior of the CSD depends strongly on
x. There are, however, some common features to all BDLCA
simulations performed in this work, including those plotted
in Fig. 2. �i� All of them start from monomeric initial condi-
tions, M1�0�=n1�0�=N0. �ii� The total number of aggregates
decreases monotonically. In other words, the average cluster
size always grows. �iii� While the number of monomers de-
creases monotonically, the number of larger aggregates
reaches at least one maximum. �iv� The time at which these
maxima are reached increases with the cluster size. The first
three points are common to all systems that aggregate irre-
versibly starting from monomeric conditions.

In spite of these common features, there are substantial
differences between the simulated BDLCA processes. One of
the most outstanding points in this sense can be observed
during the final stages of the aggregation processes. For rela-
tive concentrations around 0.5, the system reacts until all the
particles are contained in a single large cluster. At very low
x, this unique large cluster is never formed and a large num-

ber of aggregates and monomers remain in the system. Con-
sequently, there must be a critical relative concentration xc
that divides both regions. As can be appreciated from Fig. 2,
this critical point lies around x=0.15. At this relative concen-
tration, a unique large cluster could be formed, but only at
extremely large aggregation times.

We start the analysis of the obtained results discussing the
CSDs that fall clearly in the single cluster forming region,
well above xc. At first sight, the time evolution of these CSDs
seems to be very similar to the one obtained for fast aggre-
gating one-component systems �DLCA�. There are, however,
significant differences that deserve to be discussed in more
detail. Evidently, BDLCA is always slower than DLCA �see
Sec. IV A� since only a fraction of all cluster-cluster encoun-
ters leads to bond formation. This effect is most pronounced
for the smallest clusters, especially for monomers. The latter
finding may be understood as follows: At x=0.50, e.g., one-
half of all monomer-monomer encounters occur between like
particles and so, cannot give rise to dimer formation. Larger
clusters, however, may collide several times during an en-
counter �16�. Since they contain a similar number of particles
of each type, it becomes quite likely that one of these con-
secutive contacts takes place between unlike particles. Con-
sequently, two larger clusters will almost certainly aggregate
once they encounter each other. This means that they behave
almost like the sticky clusters in DLCA processes. Hence,
BDLCA processes with a similar number of particles of each
type are expected to cross over to DLCA after a certain time.

As mentioned before, one of the most important differ-
ences between BDLCA at x
0.5 and DLCA kinetics lies in
the clear excess of monomers. This monomer discrimination
was recently observed in electrostatic heteroaggregation pro-
cesses of dilute mixtures of oppositely charged colloidal par-
ticles when the experimental conditions came close to our
simulation settings �17�. In these systems, the electrostatic
interactions depend strongly on the electrolyte concentration
of the aqueous phase. A BDLCA like regime was achieved at
approximately 10 mM KBr, when the electrolyte concentra-
tion is low enough to prevent homoaggregation between like
particles but high enough to avoid the long-range attraction
between particles of opposite sign. As can be seen in Ref.
�17� Fig. 2�b�, the corresponding experimental CSD and our
simulated data shown in Fig. 2�a� behave in a very similar
way. This indicates that monomer discrimination has its ori-
gin solely in the reaction rules that are strictly fulfilled for
monomers but can be overcome by the larger clusters due to
multiple particle-particle contacts.

After having analyzed the single cluster forming region,
we focus our attention on the results obtained for relative
concentrations well below xc. Figure 2�c� shows the CSD for
x=0.05. A very unusual aggregation behavior is observed.
For example, a large number of monomers remains in the
system even at times as long as 106 s. These monomers are
particles of the majority type that keep diffusing since they
cannot find a free binding spot on a minority particle. Con-
sequently, all the minority particles must be contained inside
a shell of majority particles such that any further reaction
becomes practically impossible. Since these clusters cannot
react any more, we refer to them as stable aggregates. As can
be appreciated in Fig. 2�c�, the clusters composed by 9 and

FIG. 2. Cluster size distribution up to 10-mers ni�t� �thin dashed
lines for odd i and thin solid lines for even i�, and the overall
number of aggregates M1�t� �thick solid line�, at the initial relative
concentrations �a� x=0.50, �b� x=0.15, and �c� x=0.05. The num-
bers indicate the number of constituent particles of the clusters.

LÓPEZ-LÓPEZ et al. PHYSICAL REVIEW E 72, 031401 �2005�

031401-4



10 particles have an extremely long lifetime and so, may be
identified as such stable aggregates. These hardly reacting
aggregates seem to be analogous to the stable oligomers re-
ported by Djordjević �2� for on-lattice BDLCA simulations.
We postpone the discussion about the behavior of these
stable aggregates to Sec. IV C.

As stated before, the transition between the single cluster
forming region and the stable cluster forming region is ex-
pected to lie close to x=0.15. The CSD for this relative con-
centration is shown in Fig. 2�b�. Here, the total number of
clusters decreases much slower than for x
0.5. Moreover,
an inflexion point is observed around t=105 s. This means
that the aggregation process slows down even further after
this point. Nevertheless, it is not clear what the final stage
will be. The system might react until a single large cluster is
formed. However, if that happened, an extremely long time
would be required. Hence, the considered aggregation pro-
cess shows characteristics of both, the single and the stable
cluster forming region. The monomer concentration, e.g., de-
creases very slowly before the inflection point. After that,
however, the monomers disappear completely.

One of the most interesting features of the aggregation
processes in the transition region is observed for the 8-mers,
9-mers, and 10-mers. The numbers of these oligomers go
through two clearly distinguishable maxima just like the
humps of a camel. This reveals that there should be two
aggregation mechanisms that take place at different time
scales. It should be mentioned that such a clear double peak-
ing behavior was not reported for on-lattice simulations. In
fact, these two maxima correspond to two different oligomer
compositions. As can be appreciated in the Fig. 3 for 8-mers,
the short time maximum corresponds to clusters with two
and three minority particles. The second maximum, however,
is only due to octamers containing one minority particle. A
similar behavior is found for 9-mers and 10-mers. The
double peak formation is strongly related to the formation
and growth of the stable aggregates and will be discussed
later.

In order to identify the critical relative concentration xc, it
is convenient to analyze the long time behavior of the num-
ber of monomers n1�t� and the total number of aggregates
M1�t�. Both quantities are plotted in Fig. 4 for different val-
ues of x. Some free monomers are observed to remain in the

system for x�0.10. Obviously, a unique aggregate will
never be achieved in this case and so, the critical relative
concentration xc must be larger than 0.10. This lower limit is
quite reasonable since it lies clearly above the theoretical
limit of 1 /13
0.077. The latter value is easily obtained if
one takes into account that a minority particle can be covered
by not more than 12 majority particles. Consequently, not all
majority monomers can react if there are more than 12 ma-
jority particles per one minority particle.

Figure 4 also shows that the monomers tend to disappear
completely for all relative concentrations above x�0.125.
Nevertheless, this value should not be taken as an upper limit
for the relative concentration xc since all the monomers could
be arranged in stable aggregates that, however, will never
form a unique cluster. This makes clear that the only way to
determine the critical relative concentration xc consists in
analyzing the time evolution of the total number of aggre-
gates.

According to Fig. 4, the total number of aggregates tends
towards a value above unity for x�0.125 while a clear ten-
dency towards unity is observed for x�0.175. As was men-
tioned before, the results for x=0.15 fall in a region where it
is unclear what the final stage will be. Consequently, we only
can ensure that the critical relative concentration xc lies in
the interval �0.125, 0.175�. It should be mentioned that Al-
Sunaidi et al. obtained for the critical relative concentration
an interval of �0.190, 0.195� by means of on-lattice BDLCA
simulations �1�. Their interval, however, lies clearly above
the interval determined in this work by means of off-lattice
simulations. This implies that the minority particles are on
average covered by more majority particles when the particle
position is not constrained to a cubic lattice.

FIG. 3. Time evolution of the composition detailed cluster size
distribution for octamers, n8

l �t�, at x=0.15, l=1 �thin solid line�, l
=2 �dashed line�, and l=3 �dotted line�. The total number of octam-
ers, n8�t�, is also plotted �thick solid line�.

FIG. 4. Time evolution of the number of monomers �top� and
the total number of aggregates �bottom� for different initial relative
concentrations. The x values are indicated in the figures.
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Special attention should be payed to the lower limit of the
critical relative concentration �x=0.125� where all the mono-
mers will have reacted and form part of a relatively large
number of stable aggregates. In other words, all the free ma-
jority particles will be bound in aggregates if minority par-
ticles are added to the system in a ratio of at least 15:100.
Moreover, the production of those stable aggregates is most
efficient in this case. Both findings might be useful for future
industrial applications or serve as starting point for further
research �18�.

In the following section, we discuss the structure and
growth of the stable aggregates that form at relative concen-
trations below xc.

C. Stable aggregates

The stable clusters that remain in the system for relative
concentrations below xc are relatively small aggregates that
are comprised by a few minority particles covered with a
larger number of majority particles. In what follows, we will
use the results for x=0.05 as a representative example of the
whole stable cluster forming region. Figure 5 shows the
cluster-size distribution profile at different times. As can be
seen, the profile develops from its initial state towards a
stable distribution characterized by several clearly distin-
guishable peaks. Each peak corresponds to aggregates with a
fixed number of minority particles. We define the order of a
cluster as its number of minority particles, i.e., all clusters
having the same l in the ni

l�t� belong to the lth order. Accord-
ing to the figure, the first order aggregates peak around size
9. The second and third order peaks are centered around
sizes of 17 and 25, respectively. The small number of aggre-
gates of fourth order does not allow to determine the peak
position reliably. Nevertheless, they seem to peak at size 33.
A schematic view of typical aggregates from first to fourth
order is shown in Fig. 6.

In on-lattice BDLCA simulations, there are well-defined
binding spots on the particle surface that are given by the
structure of the employed lattice. Unreactive or stable aggre-
gates definitely remain in the system as soon as the binding
sites on all minority particles are completely saturated by
majority particles. At this final stage of BDLCA, the stable

aggregates have a well-defined size and structure that depend
on the type of the employed lattice. For a cubic lattice, e.g,
stable aggregates of first order are always of size 7. Second
order aggregates may have two different sizes depending on
the type of bond that they contain. If the two minority par-
ticles are joined through a single majority particle, then, the
resulting cluster size is 13. If they contain a double bond,
i.e., the two minority particles bind simultaneously through
two majority particles, the final cluster size is 12 �2�.

When no lattice is imposed, however, there are no well-
defined binding sites on the particle surface. Consequently,
the structure and size of the stable aggregates is not prede-
termined. This implies that the stable aggregates that finally
remain in the system have a wider size distribution. Accord-
ing to Fig. 5, the peaks for aggregates of first, second, and
third order comprise the intervals �7, 12�, �13, 20�, and �20,
27�, respectively. The lower limit for the size of the first
order aggregates can be understood if one takes into account
that it is possible to saturate a minority particle with just six
majority particles if they are located on the vertices of an
octahedron centered in it. The upper limit is determined by
the densest possible packing of spheres that restricts the
maximum coverage of a minority particle to 12 majority par-
ticles. Nevertheless, both limiting configurations are ex-
tremely ordered and so, very unlikely to observe in random
process such as off-lattice BDLCA. In fact, we obtained only
one stable aggregate of size 7 and none of size 13 in our
simulations at x=0.05.

Figure 5 also shows that the peak structure of the CSD is
well established at about t=104 s. As time goes on, the peak
positions shift slightly towards higher sizes. The peak height,
however, remains approximately constant. In order to quan-

FIG. 5. CSD profile for simulated BDLCA with x=0.05 at dif-
ferent times, 103 s �dotted line�, 104 s �dashed line�, and 105 s
�solid line�. Please note that the number of monomers falls outside
the plotted range.

FIG. 6. Typical stable aggregates obtained by means of off-
lattice BDLCA simulations with x�xc. Black circles represent mi-
nority particles, gray circles represent majority particles that link
two minority particles, and white circles represent other majority
particles.
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tify this effect, we calculated the total number, Nl=�i=1
� ni

l,
and the average size, �n�l, of all the aggregates of a lth order.
The latter quantity is given by

�n�l =
�i=1

�
ini

l�t�

Nl�t�
. �9�

The obtained results are plotted in Fig. 7. At long times,
the number of clusters of each order remain constant al-
though their sizes slightly increase. The mean size of the
aggregates of each order correspond to the peak positions of
Fig. 5. Furthermore, the different cluster orders seem always
to be approximately equally spaced. This separation, how-
ever, increases in time. In the next section, we propose an
aggregation model that tries to explain these findings.

D. Aggregation model for the stable cluster forming region
x�xc�

For a better understanding of the formation and growth of
the stable aggregates at low x, it is convenient to study the
time evolution of the total number of aggregates in the sys-
tem and their average size. We exclude the monomers from
these quantities in order to emphasize the behavior of the
relatively few aggregates that form. Hence, the total number
of clusters excluding monomers is given by

M1�t� − n1�t� = �
i=2

�

ni�t� , �10�

and the corresponding average aggregate size by

�n�aggr =
N0 − n1�t�

M1�t� − n1�t�
. �11�

These two quantities and the number of free minority par-
ticles are plotted in Fig. 8 for simulated BDLCA processes at
x=0.05. The curves allow us to distinguish several regions,
labelled by roman numerals.

During the early stages of aggregation �stage �I�� the only
possible reaction is dimer formation between minority and
majority monomers. At very short times, t5 s, the number
of minority monomers does not differ very much from its
original value. This is the stage where the HHF approxima-
tion holds. Later �stage �II��, the total number of clusters
increases quite fast while the average cluster size remains
close to 2. This process continues until the free minority
monomers disappear at approximately t=3	102 s. At this
time, the total number of aggregates reaches almost the num-
ber of minority particles. Consequently, all the minority par-
ticles have now reacted and are contained in small clusters.
Only a very small number of larger aggregates may have
formed so far. Since the majority of the formed aggregates
contain only one minority particle they are first order seeds.

In the following region �stage �III��, the average cluster
size starts to increase quite rapidly, while the total number of
aggregates decreases slightly. This means that the formed
aggregates or first order seeds grow mainly due to the addi-
tion of further majority particles. A few first order seeds,
however, react among themselves forming aggregates that
contain more than one minority particle. These higher order
seeds will have a size of approximately a multiple of the
average cluster size at that moment. This explains why ag-
gregates of size 8 start to appear in the system when the
predominant size of the first order seeds lies around 4 �see
Figs. 2�c� and 7�. Evidently, the octamers formed at that
stage will be mostly second order seeds.

The next aggregation stage �IV� starts at approximately
t=104 s. At that time, the total number of clusters reaches a
plateau while the average cluster size remains still somewhat
increasing. This implies that the seeds do not react anymore
among themselves but their size still increases due to the

FIG. 7. Time evolution of the total number of aggregates of a
given order �top� and their average size �bottom� obtained for x
=0.05, for different l values, l=1 �solid line�, l=2 �dashed line�, l
=3 �dotted line�, and l=4 �dashed-dotted-dotted line�.

FIG. 8. Time evolution of the number of free minority particles
n1

1 �dotted line, left scale�, the total number of clusters composed by
more than one particle �dashed line, left scale� and their average
size �solid line, right scale� for BDLCA with x=0.05. The vertical
dotted lines indicate the different aggregation stages.
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addition of free majority monomers. Consequently, some
majority monomers still find some open space or holes on
the surface of the seeds where they can attach to minority
particles. At this stage, the above-mentioned second order
octamers will have grown up to fully developed second order
aggregates with a size close to 17. At the same time, how-
ever, further octamers appear due to monomer addition to
first order heptamers. This means that there are two octamers
forming mechanisms that occur at very different time scales,
�a� relatively fast second order seed formation and �b� quite
slow first order seed completion. The combination of both
mechanisms explains the camel-hump-like maxima men-
tioned in Sec. IV B �see Fig. 3�. The first mechanism is of
course the more pronounced the more minority particles are
present in the system. The second mechanism occurs mainly
when the number of first order seeds is much smaller than
the number of majority particles. Close to the critical relative
concentration xc, the effect of both mechanisms is of the
same order and this is why the camel-hump-like peaks in the
CSD are observed best at x=0.15.

Finally, aggregation stops once all the holes on the surface
of the seeds have disappeared. Our simulations, however,
cannot unquestionably state this final point, but they give
clear evidence. In summary, the proposed aggregation
scheme for BDLCA processes for relative concentrations be-
low xc comprises the following five stages:

�I� HHF stage, fast reactions between unlike monomers
form dimers.

�II� Seed formation stage, dimers keep being formed.
They also grow by adding further majority particles and so
become first order seeds. This stage ends when all free mi-
nority monomers have disappeared.

�III� Seed aggregation stage, some first order seeds react
among themselves forming higher order seeds. These seeds
keep growing by adding majority monomers.

�IV� Seed completion stage, the seeds are so highly cov-
ered that they cannot react any longer among themselves.
Nevertheless, they still can grow by adding majority mono-
mers.

�V� Stable aggregate stage, all clusters are completely
coated by majority particles. Aggregation comes to an end.

This aggregation scheme is representative for all the
simulated BDLCA processes for relative concentrations
clearly below xc. However, the moments at which these
stages start and end, depend on the initial relative concentra-
tions.

V. CONCLUSIONS

Binary diffusion-limited cluster-cluster aggregation pro-
cesses were studied by means of off-lattice simulations. The
fundamental role played by the relative concentration, x, was
investigated for both, short and long aggregation times.

At short aggregation times, the predominant reaction is
dimer formation due to bond formation between two unlike
particles. In this region, the effective dimer formation rate
constant, ks�x�, follows the parabolic behavior predicted by
the HHF approximation.

At long aggregation times, the aggregation behavior is
highly dependent on x. For x�xc
0.15, aggregation contin-

ues until a single cluster is formed. In this region, the time
evolution of the CSD is somewhat similar to the well-known
DLCA processes. The main difference was found to be an
excess of monomers that is observed even for x=1/2. This
monomer excess seems to be identical to the monomer dis-
crimination recently found in electrostatic heteroaggregation
arising in oppositely charged colloids at low electrolyte con-
centrations �17�. In other words, our BDLCA simulations
show that monomer discrimination may occur even in ab-
sence of any particle-particle interaction.

At x values close to xc we found an atypical time evolu-
tion for oligomers composed from 8 to 10 particles: their
number reached two maxima at different time scales. It is
shown that these two maxima correspond to two different
compositions: several minority particles per cluster at short
times and just one minority particle per cluster at long times.
This behavior was not reported for on-lattice BDLCA simu-
lations.

At relative concentrations below xc, stable aggregates re-
main diffusing in the system and a single cluster is never
formed. In on-lattice simulations, the size and structure of
these stable aggregates is restricted to a few fixed values that
are determined by the structure of the imposed lattice. In
off-lattice simulations, however, the stable aggregates group
in wider bell-shaped distributions that correspond to clusters
with a given number of minority particles. Furthermore, the
minority particles are on average covered by more majority
particles. Consequently, the critical relative concentration xc
reported in this work was found to be far lower than in on-
lattice simulations.

We developed a five stage model for a suitable description
of the formation and growth of stable aggregates in the low x
region. Our model also explains the “two hump effect” for
the oligomers. Finally, since real colloidal dispersions are not
constricted to a lattice, we expect that experimental binary
diffusion-limited heteroaggregation processes will be better
explained by the results reported in this work. Such a com-
parison, however, will only make sense if the used experi-
mental systems fulfill the BDLCA premises, i.e., short range
interactions and strict selection rules. This can at least ap-
proximately be achieved in mixtures of oppositely charged
colloids of similar size. According to the Derjagvin-Landau-
Verwey-Overbeek �DLVO� theory, the range of the interac-
tions in such electrostatically stabilized colloids depends on
the electrolyte concentration of the solvent. At high electro-
lyte concentration, the interactions are very short ranged and
attractive due to the London–van der Waals dispersion
forces. At intermediate electrolyte concentrations, they are
still short ranged but repulsive between like colloids and
attractive between oppositely charged colloids. At very low
electrolyte concentrations, the interactions are always long
ranged. Our model should be applicable if both colloids are
in the second region. There, the interactions are sufficiently
short ranged so that the system is mainly diffusion con-
trolled. The interactions are, however, still strong enough to
ensure the selection rules to be strictly obeyed. Conse-
quently, the system is expected to follow the BDLCA kinet-
ics described in this paper. It is, of course, preferable to use
oppositely charged colloids with similar surface potentials.
Nevertheless, the surface charge ratio is not expected to play
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an important role due to the short ranged interactions. Evi-
dently, an extrapolation of the results to experiments should
always be made with caution since remaining interactions
may, e.g., alter the final structure of the stable aggregates and
change the value of the critical relative concentration. In any
case, our simulations give a clear idea what one expects in
the limit of pure contact forces, i.e., extremely short range
interactions.
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